Фотоклуб - фототехника Canon Nikon Sony

Вернуться   Фотоклуб - фототехника Canon Nikon Sony > Фототехника > Фототехника и оптика Canon
Перезагрузить страницу ДД, 14битный RAW, АЦП и другая математика глядя на анонс 450D
Фототехника и оптика Canon Canon-Club.ru - Пленочная и цифровая зеркальная техника Canon, а также совместимая сторонних производителей

 
 
Опции темы Опции просмотра
  (#9) Старый
Michael_home Michael_home вне форума
эксперт
Зав. Фотолаб.
 
Аватар для Michael_home
 
Сообщений: 1,012
Регистрация: 16.10.2006
По умолчанию 31.03.2008, 12:16

Комбинаторика,
1) то же, что математический комбинаторный анализ.
2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов (безразлично, какой природы; это могут быть буквы, цифры, какие-либо предметы и т.п.).
Одной из важных классических задач комбинаторики является задача нахождения количества способов размещения какого-то числа заданных объектов в некотором заданном количестве мест ("ящиков") таким образом, чтобы они удовлетворяли при этом некоторым заданным условиям (ограничениям). Рассматриваются также размещения с повторением (т. е. всевозможные наборы из m предметов n различных видов, порядок в наборе существен) и сочетания с повторением (то же, но порядок в наборе не существен).

Размещения с повторениями. Пусть Х - множество, состоящее из n элементов (n-членное множество). Тогда любая строка длиной k, составленная из элементов множества Х, называется размещением с повторениями из n элементов по k.

Теорема. Число всех размещений с повторениями из n элементов по k равно n^k.

Обычно, доказательство теоремы о числе разещений с повторениями у учащихся средней школы затруднений не вызывает.

Пример 1. Сколькими способами можно выбрать четырехзначное число, в десятичной записи которого нет нуля?
Решение. Четырехзначные числа указанного вида можно рассматривать как строки длиной 4, составленные из элементов множества Х = {1, 2, 3, 4, 5, 6, 7, 8, 9}, т.е. как размещения с повторениями из 9 элементов по 4. Следовательно, искомое число способов равно: 94 = 6561.

Пример 2. Рассмотрим последовательности из 2 чисел, в которых каждый член - целое число в диапазоне от 0 до 1. Как перебрать все такие последовательности?
Решение. Нужно вычислить, сколько всего шагов по перебору вариантов нам нужно сделать. А для этого нам необходимо знать, сколько всего существует размещений с повторениями для заданного количества мест N и заданного количества чисел K, которые мы можем поставить на каждое место.

Итак, рассмотрим имеющиеся у нас N позиций. На первую позицию мы можем поставить любое из K чисел. Какое бы число мы не поставили на первое место, на второе место мы опять можем поставить любое из K чисел, таким образом, первые два места мы можем занять K x K способами. Продолжая так и далее, получим, что занять все позиции числами мы можем K x … x K = K^N способами.
Количество последовательностей длины N из K различных символов равно K^N.
Таким образом, чтобы перейти от первой последовательности к последней, нужно совершить K^N - 1 переход.


С уважением, Михаил
____________________________
Я не фотограф - я только учусь,
и не эксперт - просто сообщений стало больше 500
Ответить с цитированием
 

Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Реклама:



Powered by vBulletin® Version 3.8.6
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot
Хостинг предоставлен 100mb.ru
vBulletin Skin developed by: vBStyles.com
© Copyright 2005 - 2011